organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Adel Beghidja,^a Ali Benboudiaf,^a Chahrazed Beghidja^a and Richard Welter^b*

^aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri Constantine, 25000 Algeria, and ^bLaboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, 67000 Strasbourg, France

Correspondence e-mail: welter@chimie.u-strasbg.fr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.060 wR factor = 0.209 Data-to-parameter ratio = 21.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Chloro-3-chloromethylbenzo[h]quinoline

The title compound, $C_{14}H_9Cl_2N$, a derivative of benzoquinoline, is a tricyclic planar nitrogen heterocyclic system.

Comment

The molecular structure of the title compund, (I), is composed of a tricyclc planar nitrogen heterocyclic system, carrying two substituents (Cl and CH₂Cl; Fig. 1). This system displays potential biological interest (Kerry *et al.*, 1999). The crystal structure consists of planes stacked along the *b* axis. The plane-to-plane separations are 3.46 and 3.50 Å (Fig. 2).

Experimental

The title compound was prepared according to the method of Meth-Cohn *et al.* (1981). At a temperature ranging between 273 and 278 K, 0.07 mol of POCl₃ was added dropwise to 0.015 mol of dry *N*,*N*-dimethylformamide. Stirring was continued for 30 min, then 0.01 mol of 3-chloro-*N*-1-naphthylpropionamide, synthesized previously, was added. Stirring was continued at 353 K for 2 h and then the mixture was poured into cooled water. The brown precipitate was dried in an oven at 313 K and recrystallized from ethanol as brown needles of (I).

Crystal data	
$C_{14}H_9Cl_2N$	Z = 2
$M_r = 262.12$	$D_x = 1.489 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.9211 (10) Å	Cell parameters from 25
b = 8.3176 (10) Å	reflections
c = 10.6480 (10) Å	$\theta = 2.5 - 30.0^{\circ}$
$\alpha = 79.21 \ (10)^{\circ}$	$\mu = 0.53 \text{ mm}^{-1}$
$\beta = 76.19 \ (10)^{\circ}$	T = 293 (2) K
$\gamma = 85.84 \ (10)^{\circ}$	Needle, brown
$V = 584.5 (3) \text{ Å}^3$	0.13 \times 0.05 \times 0.04 mm

Figure 1

 \bigcirc 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.

Received 11 November 2003 Accepted 9 January 2004 Online 17 January 2004

Data collection

Enraf–Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3498 measured reflections 3288 independent reflections 2022 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.085$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.210$ S = 1.083288 reflections 154 parameters H-atom parameters constrained $k = 0 \rightarrow 11$ $l = -14 \rightarrow 14$ 2 standard reflections frequency: 120 min intensity decay: 2%

 $\theta_{\rm max} = 30.0^{\circ}$ $h = -9 \rightarrow 9$

$$\begin{split} &w = 1/[\sigma^2(F_o^{-2}) + (0.0861P)^2 \\ &+ 0.6126P] \\ &where \ P = (F_o^{-2} + 2F_c^{-2})/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.41 \ \text{e} \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.35 \ \text{e} \ \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

N1-C13-C12	1122.2 (3)	C2-C1-Cl1	113.0 (2)
C1-N1-C13	117.1(3)	N1 - C1 - C2	126.6(3)
N1-C13-C4	122(2(3))	N1 - C1 - C1	1150(2)
Cl1-C1	1.756 (3)	N1-C1	1.302 (4)
Cl2-C14	1.799 (4)	N1-C13	1.354 (4)

All H atoms in (I) were positioned geometrically and allowed to ride on their parent atoms [C-H = 0.93 and 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$].

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms, 1995); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON*98 (Spek, 1998); software used to prepare material for publication: *SHELXL*97.

We are grateful to Professor Salah Eddine Bouaoud (Laboratoire de Chimie Moléculaire, du Contribôle de l'Environnement et des Mesures Physico-chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri Constantine) for his assistance in this work.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- Kerry, M. A., Boyd, G. W., Mackay, S. P., Meth-Cohn, O. & Platt, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2315–2321.
- Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–1530.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen. Germany. Spek, A. L. (1998). PLATON98. Utrecht University, The Netherlands.